1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
use crate::{
ast::{query::Queriable, Circuit, Expr, StepType, StepTypeUUID, Lookup},
compiler::{FixedGenContext, TraceContext, WitnessGenContext},
util::uuid,
};
use halo2_proofs::plonk::{Advice, Column as Halo2Column, Fixed};
use core::fmt::Debug;
use self::cb::{Constraint, LookupBuilder};
/// The **`CircuitContext`** struct is a generic structure designed to handle the context of a circuit for generic types **`F`**, **`TraceArgs`** and **`StepArgs`**. The struct contains a **`Circuit`** instance and implements methods to build the circuit, add various components, and manipulate the circuit.
/// **Type Parameters**
/// - **`F`**: A generic type representing the field of the circuit.
/// - **`TraceArgs`**: A generic type representing the arguments passed to the trace function.
/// - **`StepArgs`**: A generic type representing the arguments passed to the step_type_def function.
pub struct CircuitContext<F, TraceArgs, StepArgs> {
sc: Circuit<F, TraceArgs, StepArgs>,
}
impl<F, TraceArgs, StepArgs> CircuitContext<F, TraceArgs, StepArgs> {
/// # **Description:**
/// Adds a forward signal to the circuit with zero rotation and returns a **`Queriable`** instance.
/// # **Arguments:**
/// - **`name: &str`** - The name of the forward signal.
/// # **Return:**
/// - **`Queriable<F>`** - A **`Queriable`** instance representing the added forward signal.
pub fn forward(&mut self, name: &str) -> Queriable<F> {
Queriable::Forward(self.sc.add_forward(name, 0), false)
}
/// # **Description:**
/// Adds a forward signal to the circuit with the specified phase and returns a **`Queriable`** instance.
/// # **Arguments:**
/// - **`name: &str`** - The name of the forward signal.
/// - **`phase: usize`** - The phase of the forward signal.
/// # **Return:**
/// - **`Queriable<F>`** - A **`Queriable`** instance representing the added forward signal.
pub fn forward_with_phase(&mut self, name: &str, phase: usize) -> Queriable<F> {
Queriable::Forward(self.sc.add_forward(name, phase), false)
}
/// # **Description:**
/// Imports a halo2 advice column into the circuit and returns a **`Queriable`** instance.
/// # **Arguments:**
/// - **`name: &str`** - The name of the halo2 advice column.
/// - **`column: Halo2Column<Advice>`** - The advice column to import.
/// # **Return:**
/// - **`Queriable<F>`** - A **`Queriable`** instance representing the imported halo2 advice column.
pub fn import_halo2_advice(&mut self, name: &str, column: Halo2Column<Advice>) -> Queriable<F> {
Queriable::Halo2AdviceQuery(self.sc.add_halo2_advice(name, column), 0)
}
/// # **Description:**
/// Imports a halo2 fixed column into the circuit and returns a **`Queriable`** instance.
/// # **Arguments:**
/// - **`name: &str`** - The name of the halo2 fixed column.
/// - **`column: Halo2Column<Fixed>`** - The fixed column to import.
/// # **Return:**
/// - **`Queriable<F>`** - A **`Queriable`** instance representing the imported halo2 fixed column.
pub fn import_halo2_fixed(&mut self, name: &str, column: Halo2Column<Fixed>) -> Queriable<F> {
Queriable::Halo2FixedQuery(self.sc.add_halo2_fixed(name, column), 0)
}
/// # **Description:**
/// Adds a new step type with the specified name to the circuit and returns a **`StepTypeHandler`** instance.
/// # **Arguments:**
/// - **`name: &str`** - The name of the new step type.
/// # **Return:**
/// - **`StepTypeHandler`** - A **`StepTypeHandler`** instance representing the added step type.
pub fn step_type(&mut self, name: &str) -> StepTypeHandler {
let handler = StepTypeHandler::new(name.to_string());
self.sc.add_step_type(handler, name);
handler
}
/// # **Description:**
/// Defines a step type using the provided **`StepTypeHandler`** and a function that takes a mutable reference to a **`StepTypeContext`**. This function typically adds constraints to a step type and defines witness generation.
/// # **Arguments:**
/// - **`handler: StepTypeHandler`** - The **`StepTypeHandler`** instance representing the step type to define.
/// - **`def: D`** - The function that defines the step type by taking a mutable reference to a **`StepTypeContext`**.
pub fn step_type_def<D>(&mut self, handler: StepTypeHandler, def: D)
where
D: FnOnce(&mut StepTypeContext<F, StepArgs>),
{
let mut context =
StepTypeContext::<F, StepArgs>::new(handler.uuid(), handler.annotation.to_string());
def(&mut context);
self.sc.add_step_type_def(context.step_type);
}
/// # **Description:**
/// Sets the trace function for the circuit. The trace function is responsible for adding step instantiations defined in step_type_def.
/// # **Arguments:**
/// - **`def: D`** - The trace function, which takes a mutable reference to a **`TraceContext`** and a **`TraceArgs`** instance.
pub fn trace<D>(&mut self, def: D)
where
D: Fn(&mut dyn TraceContext<StepArgs>, TraceArgs) + 'static,
{
self.sc.set_trace(def);
}
/// # **Description:**
/// Sets the fixed generation function for the circuit. The fixed generation function is responsible for assigning fixed values to fixed column **`Queriable`**. It is entirely left for the user to implement and is Turing complete. Users typically generate cell values and call the `**assign**` function to fill the fixed columns.
/// # **Arguments:**
/// - **`def: D`** - The fixed generation function, which takes a mutable reference to a **`FixedGenContext`**. See more information about this trait and its assign function below.
pub fn fixed_gen<D>(&mut self, def: D)
where
D: Fn(&mut dyn FixedGenContext<F>) + 'static,
{
self.sc.set_fixed_gen(def);
}
/// # **Description:**
/// Enforce the type of the first step by adding a constraint to the circuit.
/// # **Arguments:**
/// - **`step_type: StepTypeHandler`** - The **`StepTypeHandler`** instance representing the first step type to enforce.
pub fn pragma_first_step(&mut self, step_type: StepTypeHandler) {
self.sc.first_step = Some(step_type);
}
/// # **Description:**
/// Enforce the type of the last step by adding a constraint to the circuit.
/// # **Arguments:**
/// - **`step_type: StepTypeHandler`** - The **`StepTypeHandler`** instance representing the last step type to enforce.
pub fn pragma_last_step(&mut self, step_type: StepTypeHandler) {
self.sc.last_step = Some(step_type);
}
}
/// The **`StepTypeContext`** struct is a generic structure designed to handle the context of a step type for generic types **`F`** and **`Args`**. The struct contains a **`StepType`** instance and implements methods to build the step type, add components, and manipulate the step type.
/// **Type Parameters**
/// - **`F`**: A generic type representing the field of the step type.
/// - **`Args`**: A generic type representing the arguments passed to the step type.
pub struct StepTypeContext<F, Args> {
step_type: StepType<F, Args>,
}
impl<F, Args> StepTypeContext<F, Args> {
pub fn new(uuid: u32, name: String) -> Self {
Self {
step_type: StepType::new(uuid, name),
}
}
/// # **Description:**
/// Adds an internal signal to the step type with the given name and returns a **`Queriable`** instance.
/// # **Arguments:**
/// - **`name: &str`** - The name of the internal signal.
/// # **Return:**
/// - **`Queriable<F>`** - A **`Queriable`** instance representing the added internal signal.
pub fn internal(&mut self, name: &str) -> Queriable<F> {
Queriable::Internal(self.step_type.add_signal(name))
}
/// # **Description:**
/// Adds a constraint to the step type. Involves internal signal(s) only.
/// # **Arguments:**
/// - **`constraint: C`** - Accepts any type that can be converted into a **`Constraint<F>`**. Chiquito provides syntax sugar for defining complex constraints. Refer to **Constraint Builder DSL Functions** section for more information.
pub fn constr<C: Into<Constraint<F>>>(&mut self, constraint: C) {
let constraint = constraint.into();
self.step_type
.add_constr(constraint.annotation, constraint.expr);
}
/// # **Description:**
/// Adds a transition constraint to the step type. It’s the same as a regular constraint except that it can involve forward signal(s) as well.
/// # **Arguments:**
/// - **`constraint: C`** - Accepts any type that can be converted into a **`Constraint<F>`**. Chiquito provides syntax sugar for defining complex constraints. Refer to **Constraint Builder DSL Functions** section for more information.
pub fn transition<C: Into<Constraint<F>>>(&mut self, constraint: C) {
let constraint = constraint.into();
self.step_type
.add_transition(constraint.annotation, constraint.expr);
}
/// # **Description:**
/// Sets the witness generation function for the step type. The witness generation function is responsible for assigning witness values to witness column **`Queriable`**. It is entirely left for the user to implement and is Turing complete. Users typically generate cell values and call the assign function to fill the witness columns.
/// # **Arguments:**
/// - **`def: D`** - The witness generation function, which takes a mutable reference to a **`WitnessGenContext`** and an **`Args`** instance, a generic type representing the arguments passed to the witness generation function. See more information about the **`WitnessGenContext`** trait and its assign function below.
pub fn wg<D>(&mut self, def: D)
where
D: Fn(&mut dyn WitnessGenContext<F>, Args) + 'static,
{
self.step_type.set_wg(def);
}
}
impl<F: Debug + Clone, Args> StepTypeContext<F, Args> {
/// # **Description:**
/// Adds a lookup table to the step type.
/// # **Arguments:**
/// - **`lookup_builder: &mut LookupBuilder<F>`** - The lookup table builder from which to add the lookup table to the step type.
pub fn add_lookup(&mut self, lookup_builder: &mut LookupBuilder<F>) {
self.step_type.lookups.push(lookup_builder.lookup.clone());
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct StepTypeHandler {
id: StepTypeUUID,
pub annotation: &'static str,
}
impl StepTypeHandler {
fn new(annotation: String) -> Self {
Self {
id: uuid(),
annotation: Box::leak(annotation.into_boxed_str()),
}
}
pub fn uuid(&self) -> u32 {
self.id
}
pub fn next<F>(&self) -> Queriable<F> {
Queriable::StepTypeNext(*self)
}
}
pub struct ForwardSignalHandler {
// fs: ForwardSignal,
}
/// Creates a `Circuit` instance by providing a name and a definition closure that is applied to a mutable `CircuitContext`. The user customizes the definition closure by calling `CircuitContext` functions. This is the main function that users call to define a Chiquito circuit.
/// # **Arguments:**
/// `_name: &str`: The name of the circuit. (Note: Currently, the name is not used for annotation within the function, but it may be used in future implementations.)
/// `def: D`: A closure that defines the circuit by modifying a `CircuitContext`. The closure has the following signature: `Fn(&mut CircuitContext<F, TraceArgs, StepArgs>)`.
/// # **Return:**
/// `Circuit<F, TraceArgs, StepArgs>`: A new Circuit instance, as defined by the provided closure.
pub fn circuit<F, TraceArgs, StepArgs, D>(_name: &str, def: D) -> Circuit<F, TraceArgs, StepArgs>
where
D: Fn(&mut CircuitContext<F, TraceArgs, StepArgs>),
{
// TODO annotate circuit
let mut context = CircuitContext {
sc: Circuit::default(),
};
def(&mut context);
context.sc
}
pub mod cb;